Mathematical Model Identification and Verification Of linear step motor

DAW M. ALZENTANI

¹ (Department, Electric and Electronic, ZAWIA University, Zawia, Libya) daw_425@yahoo.com

Abstract _ A variety of mathematical models for direct drive can not give the exact and definite description of drive behavior.

The approach to mathematical model constructing and its verification are described. The model which with sufficient accuracy describes direct drive is based on model building of physical processes which take place in electrical drive.

Mathematical model presented is used for computer simulation of control system with different regulators which are to improve motor's dynamics, and, as the result, hardware performance and precision.

Keywords-- Matlab and Simulink, toolbox identifications, Linear Step Motor, State Space.

I. Direct Drive Mathematical Model

The model which with sufficient accuracy describes Linear step motor is based on model building of physical processes of linear step motor. Such approach allows to take into consideration most of non-linear energy transformations in the motor.

The presented mathematical model is based on description of physical processes in linear step motor (LSM).

Such approach allows take into consideration most non-linear energy transformation in the motor. The model of LSM consistsof three parts: electrical, magnetic, and mechanical [1]. Such an division of LSM model helps simplify the investigation of model adequacy, besides usage of such approach is supposed to make the model "transparent", e.g. it will help to estimate the contribution of this or that variable into dynamics of LSM.

A. Electrical model.

Control system of direct drive is equipped with power amplifier. Most modern power amplifiers have internal current feedback, so by such means power amplifier can be considered as current source. So, to sum it up, the mathematical model of power amplifier is considered as a current source.

While carrying out computer simulation, eddy currents were neglected [2]. The constant magnet was considered asmagnetic flux source with magneto-motive force Mpm and magnetic reluctance Rpm.

The definition of magnetic reluctances Ri and Rpl is the main problem in direct drive dynamics computer simulation. The problem is that Ri has a non-linear functional dependenceon position, air-gap, and flux [2]. For successful computer simulation of direct drive dynamics, it is mandatory to precisely define magnetic reluctances. For the purposes of Ridefinition, the magnetic path of electromagnetic module is divided into several parts, which have equal cross-section and magnetic flux density.

The magnetic path is divided into the following parts:

Corebase, legs, drives teeth, air-gap, platform teeth, andplatform base. Having described magnetic reluctance of these parts, it is possible to build magnetic model of drive which describe electromagnetic energy transformation.

the equation for derive the force is as follows (1) [3]:

$$F = R_{G0} \frac{4\pi k_G}{p} \left(\Phi_{23} \Phi_{pm,A} \cos \frac{2\pi x}{p} - \Phi_{67} \Phi_{pm,B} \sin \frac{2\pi x}{p} \right), (1)$$

Where RG0 is average air-gap reluctance, kG is normalized air-gap reluctance amplitude, p is pitch, 2 3 and 67 are totalfluxes flowing through the electric coil of phases A and Brespectively, pm. A and pm. b are fluxes flowing throughpermanent magnet of phases A and B respectively, x is motor

coordinate.

The equation (1) presents force F as a function of Φ and x.

B. Mechanical model.

While traveling, the linear stepper motor slides over air-cushion support. So, neglectingaerodynamic friction, Newton's law for linear stepper motor can be presented as (2):

$$F - F_d - m\ddot{x} = 0$$
, (2)

Where m is the total drive mass, Fd is resistance to motion. After double integrating this equation, we find out the interconnection between motor's position x and electromagnetic sub-system of motor.

II. State space mathematical model

The usefulness of state space model presentation is determined by uniqueness and completeness of motordescription with state space equations. This also prepares the implementation of the model in

1 5 1

The computer software used for simulation, Basing on equations which were shown above, we can derive the system of differential equations in state space form which represents the dynamics of the direct drive (3). On the base of these equations, one can mention that variables F23, F67, x and v are state space variables of direct drive. While the number of states is unique for each system, it should be emphasized that the choice of variables that are declared as state variables is rather a matter of convenience [1]. Using these equations, it is possible carry out computer simulation of direct drive. The inputs of thesystem are power amplifier currents iA and iB. The outputswhich are to be monitored depend entirely on the application. In case presented x, v and F are output variables.

For a unique solution of (3), the states at start time must be known. While carrying out computer simulation of direct drive, it was assumed that power has been switched on a long time ago, so that the power-up transients have subsided. A numerical solution of system of differential equations is used

$$\begin{cases} \Phi_{23} = f_1(\Phi_{23}, R_i(x, \Phi_i(i_A(\Phi_{23}, R_j(...)), R_k(...))), i_A, t) = \\ = \tilde{f}_1(\Phi_{23}, x, i_A, t), \\ \Phi_{67} = f_1(\Phi_{67}, R_i(x, \Phi_i(i_A(\Phi_{67}, R_j(...)), R_k(...))), i_B, t) = \\ = \tilde{f}_1(\Phi_{67}, x, i_B, t), \\ \dot{v} = f_3(F(\Phi_{23}, \Phi_{67}, \Phi_{pm,A}(\Phi_i(i_A(\Phi_{23}, R_j(x, \Phi_j(...))), R_k(...))), \\ \Phi_{pm,B}(\Phi_i(i_B(\Phi_{67}, R_j(x, \Phi_j(...))), R_k)), F_d(v), t) = \\ = \tilde{f}_3(\Phi_{23}, \Phi_{67}, x, t), \\ \dot{x} = v = \tilde{f}_4(v, t). \end{cases}$$
(3)

III. Simulation software

Almost any language programming language can be used to give a numerical approximation of a system of first order differential equations. Anyway, MATLAB/Simulink software package was used for computer simulation of mathematical model of direct drive. It features a graphical interface for constructing models in a block-diagram-like fashion, offers access to the MATLAB tools for displaying and analyzing produces output. In fact, it has the capability to describe the linear motor model without using differential equations at all, the immediate relations between system variables can be encoded and linked by data flow paths.

IV. Mathematical Model Verification

The main goal of working out a model is to create anadequate model, as only adequacy can guarantee the motor's behavior prediction. To verify worked out model, Identification Toolbox of MATLAB was used. This tool helps verify mathematical model with high accuracy. Duringexperiments, the model of motor LSM-211PF.HS produced by RuchServoMotor was verified.

Identification Toolbox needs some input and output data which represent control signals and system response. Basing on these data, the transfer function of the system is built, and, using one of identification techniques, the model transfer function is constructed. The signals used for model verification are divided into two groups: simulation results And experimental data. It's obvious, that both groups must incorporate the same signals of two (one virtual –model; another one real- linear step motor with controller) systems. The signals acquired for model verification are shown in

Fig.1.

The block-diagram represents the overall structure ofdirect drive control system. Regulator block is understood as control system algorithm (i.e. PID or other types of regulators). Power amplifier represents all power converters of the system. LSM means direct drive, and feedback sensor is understood as measurement system.

Fig. 1. Signal acquired for model verification

For the case of LSM-PF.211.HS motor verification a hall-effect sensor was used, as this is a standard option of this class of drives.

V. Experimental investigation

As it was mentioned before, verification procedurepresupposes manipulation with experimental data. For the purposes of experimental data acquisition, a test bench, was implemented, and direct drive transient process signals were measured and processed. The signals were measured and processed with differentacceleration, velocity and travel tasks, to provide as much aspossible information for analysis. The results of experiments,travel errors, with different accelerations (amax) and velocities (Vmax) are presented in Fig. 2–4.

Fig.2. Transient process signals with $(V_{\text{max}}) = 0,1$ m/s, $(\mathcal{A}_{\text{max}}) = 5$ m/s2

Outpu

The measurements were carried out using specified equipmenton Ruchservomotor enterprise. The measurement system was based on Hall Effect sensor which is installed in LSM-211PF.HS linear stepper motor.

The control system of drive was based on eZDSP TMS 320 processor by Taxes Instruments.

Fig. 3. Transient process signals with $V_{max} = 1 \text{ m/s}$, $a_{max} = 15 \text{ m/s}2$

5000

4000 3000 2000

Fig.

to P(

The data acquired during computer simulation is also used

tobuild the transfer function of LSM model Wmod(s). At last,

the comparison of these two transfer functions is done and the conclusion is made. Verification algorithm block-diagram is

The time scopes of data acquired for verification are

Presented in Fig. 5.

Presented on Fig. 6.

VI.

0.1

Verification Algorithm

The second stage presupposes building two transfer W1(s) and W2(s) functions of system basing on two different data scopesacquired during the first half time of experiment and during the second one. Having built these three transfer functions, their comparison is carried out. If these transfer functions are similar, the average transfers function Wexp(s) is build. In casewhen these three functions vary greatly, our method of verification cannot be applied, as the model changes in time.

Fig. 5. Verification algorithm block-diagram

VII. Verification Results

On the base of experimental data and data acquired during computer simulation, transfer functions of direct drive were built. The analysis of model adequacy was carried out ARX and PEM methods [6]. Transient responses of model worked out and real direct drive were acquired and compared. These transients are presented in Fig. 7.

m/s2

ferred

0.12

0.12

0.14

0.16

Fig. 6. Verification data scopes

The transfer function of mathematical model is as follows (4):

$$G(s) = \frac{X(s)}{U(s)} = \frac{0.9389s + 0.5411}{s^2 + 0.6211s + 0.5335}$$
(4)

While speaking about verification results, one should mention that transfer function which was acquired as the result, shows that direct drive can be represented as a lag element. Though some similar results can be achieved when representing direct drive as a DC-drive, nevertheless, the approach of DC-drive usage is wrong, as the model of direct drive can vary greatly, which depends on different conditions, i.e., speed, currents, etc.

References

- Schulze-Lauen H. Development of an Enhanced Linear Motor Drive for a High Speed Flexible Automation System. – Massachusetts Institute of Technoogy, 1993.
- Mezhinsky Y. Building Travel Systems for Flexible Automated Equipment. – Minsk: Technoprint, 2002.
- 3. RUCH Servomotor. Web site of the company:<u>www.ruchservomotor.com</u>.
- Karpovich S., Dainiak I. Calibration Algorithm for ControlSystem of Stepping Motor // Proceedings of 45-th International Scientific Colloquium, Ilmenau Technical University (Germany), October 4–6, 2000. – Ilmenau: TU, 2000. – P. 563–567.
- Karpovich S., Rusetsky A., Mezhinsky Y. Dynamics Of Programmed Movements In Multi-coordinate Systems // Proceedings of International Conference on Electrical Drives and Power Electronics (EDPE), Koshice, November, 1999. – Koshice: TU, 1999. – P. 215–222.
- Ljung L. System Identification: Theory for the User. –Prentice-Hall, Englewood Cliffs, NJ, 1998. – 150 p.

The adequacy, of worked-out model, with accuracy up to 80...83%. That means that the worked out mathematical model can be used afterwards for computer simulation with different regulators, which increase the motor's dynamic characteristics.